Evaluate a Decision Tree with Lookup
Updated: Aug 24, 2023
This example combines the evaluation of a decision tree with lookup functionality, offering you a powerful tool for data processing and decision-making. By incorporating lookup capabilities, you can retrieve additional information or make data-driven decisions based on external data sources, enhancing the decision-making process within the evaluation of the decision tree.
Decision Tree is a hierarchical structure that represents a series of conditions and outcomes. It is used to evaluate input data by following the branches of the tree, checking conditions at each node, and ultimately reaching a final outcome based on the satisfied conditions.
Java Code Listing
package com.northconcepts.datapipeline.foundations.examples.decisiontree; import com.northconcepts.datapipeline.core.FieldList; import com.northconcepts.datapipeline.core.Record; import com.northconcepts.datapipeline.foundations.decisiontree.DecisionTree; import com.northconcepts.datapipeline.foundations.decisiontree.DecisionTreeNode; import com.northconcepts.datapipeline.foundations.decisiontree.DecisionTreeResult; import com.northconcepts.datapipeline.internal.expression.DefaultExpressionContext; import com.northconcepts.datapipeline.transform.lookup.BasicLookup; import com.northconcepts.datapipeline.transform.lookup.Lookup; public class EvaluateADecisionTreeWithLookup { public static void main(String[] args) { DefaultExpressionContext input = new DefaultExpressionContext(); input.setValue("Price", 159); input.setValue("Currency Code", "cad"); Lookup currencyLookup = new BasicLookup(new FieldList("Currency Name")) .add("CAD", "Canadian Dollars") .add("USD", "American Dollars") .add("EUR", "Euros") .add("GBP", "British Pounds") .add("MXN", "Mexican Pesos"); DecisionTree tree = new DecisionTree() .setValue("currencyLookup", currencyLookup) .setRootNode(new DecisionTreeNode() .addNode(new DecisionTreeNode("Price == null || Price < 20") .addOutcome("Shipping", "0.00") .addOutcome("Currency", "lookup(0, currencyLookup, toUpperCase(${Currency Code}))")) .addNode(new DecisionTreeNode("Price < 50") .addOutcome("Shipping", "5.00") .addOutcome("Currency", "lookup(0, currencyLookup, toUpperCase(${Currency Code}))")) .addNode(new DecisionTreeNode("Price < 100") .addOutcome("Shipping", "7.00") .addOutcome("Currency", "lookup(0, currencyLookup, toUpperCase(${Currency Code}))")) .addNode(new DecisionTreeNode("Price >= 100") .addOutcome("Shipping", "${Price} * 0.10") .addOutcome("Currency", "lookup(0, currencyLookup, toUpperCase(${Currency Code}))"))); DecisionTreeResult result = tree.evaluate(input); Record outcome = result.getOutcome(); System.out.println("outcome = " + outcome); } }
Code Walkthrough
- A
DefaultExpressionContext
is defined as the input of the decision tree where we set properties such asPrice
,Currency Code
. - BasicLookup is created to specify additional information about Currency. A new field
Currency Name
is added with five rows. - Then, a
DecisionTree
is initialized andcurrencyLookup
specified in the previous step is applied. - A root node and a variety of child nodes having conditions on properties are then added.
- In order to attach an outcome with a node,
addOutcome()
method is invoked. - The
input
is then evaluated and stored in aDecisionTreeResult
instance. - Finally,
getOutcome()
is invoked to display the results of the evaluation on the console.
Console Output
outcome = Record (MODIFIED) { 0:[Shipping]:DOUBLE=[15.9]:Double 1:[Currency]:STRING=[Canadian Dollars]:String }